
Stephen Checkoway

Programming Abstractions
Week 11-1: MiniScheme F and G, lambdas and set!

Announcement

Homework 7 is now up on the website

‣ Use the same groups as before (this time, they should be created already)

‣ It's due on August 18

Review: How do we parse an application like (+ 2 3)?

A. '(app-exp + 2 3)

B. '(app-exp + (2 3))

C. '(app-exp (var-exp +) (lit-exp 2) (lit-exp 3))

D. '(app-exp (var-exp +) ((lit-exp 2) (lit-exp 3)))

E. None of the above

3

At a higher-level of detail

Applications are parsed into two parts

‣ The expression for the procedure part

‣ The list of parsed arguments

Evaluating an app-exp

Evaluating an app-exp

How do we evaluate the app-exp we get from 

(app-exp parsed-proc list-of-parsed-args)?

Evaluating an app-exp

How do we evaluate the app-exp we get from 

(app-exp parsed-proc list-of-parsed-args)?

In steps

‣ We evaluate the parsed-proc and the list-of-parsed-args in the
current environment

‣ Then we call apply-proc with the evaluated procedure and list of arguments

MiniScheme F: Lambdas

EXP → number	 	 	 	 parse into lit-exp  
 | symbol	 	 	 	 parse into var-exp  
 | (if EXP EXP EXP) 	 	 parse into ite-exp  
 | (let (LET-BINDINGS) EXP)	 parse into let-exp  
 | (lambda (PARAMS) EXP)	 parse into lambda-exp  
 | (EXP EXP*) parse into app-exp  
LET-BINDINGS → LET-BINDING*  
LET-BINDING → [symbol EXP]* 
PARAMS → symbol*

Implementing lambdas
Parsing

Parse a lambda expression such as (lambda (x y z) body) into a new
lambda-exp structure

This needs

‣ The parameter list, e.g., '(x y z)

‣ the parsed body

Note that the parameter list is not parsed, it's just a list of symbols

Implementing lambdas
Evaluating

What should a lambda-exp evaluate to?

In other words, what is the result of evaluating something like 

 (lambda (x) (+ x y))?

Closures!

We need a closure data type

‣ (closure parameter-list body environment)

‣ (closure? obj)

‣ (closure-params c)

‣ (closure-body c)

‣ (closure-env c)

The parameter-list and the body come from the lambda-exp

The environment is the current environment argument to eval-exp

Where should the new closure data type be defined? Why?

A. parse.rkt

B. interp.rkt

C. In the same file as prim-proc

D. A and C

E. B and C

10

To recapitulate

To parse a lambda

‣ Make a new lambda-exp object to hold parameters and body

To evaluate a lambda

‣ Make a new closure object to hold the parameters, body, and environment

Nothing new is needed for parsing calls to lambda expressions; why?

(let ([f (lambda (x) (+ x y))])  
 (f (- a b)))

Evaluating calls to closures

Recall: All applications are evaluated by calling apply-proc with the evaluated
procedure and the list of evaluated arguments

Here's what our apply-proc looks like after homework 6

(define (apply-proc proc args)

 (cond [(prim-proc? proc)

 (apply-primitive-op (prim-proc-op proc) args)]

 [else (error 'apply-proc "bad procedure: ~s" proc)]))

Evaluating calls to closures

We need to add some code before the else

(define (apply-proc proc args)

 (cond [(prim-proc? proc)

 (apply-primitive-op (prim-proc-op proc) args)]

 [(closure? proc) …]

 [else (error 'apply-proc "bad procedure: ~s" proc)]))

How do we evaluate the closure?

How do we evaluate the closure?

At a high level (don't think about MiniScheme here), given a closure and some
arguments, how do we evaluate calling the closure?

How do we evaluate the closure?

At a high level (don't think about MiniScheme here), given a closure and some
arguments, how do we evaluate calling the closure?

Steps

‣ Extend the closure's environment with bindings from the closure's parameters
to argument values

‣ Evaluate the body of the closure in this extended environment

How do we evaluate the closure?

At a high level (don't think about MiniScheme here), given a closure and some
arguments, how do we evaluate calling the closure?

Steps

‣ Extend the closure's environment with bindings from the closure's parameters
to argument values

‣ Evaluate the body of the closure in this extended environment

If you find yourself wanting to pass the environment from eval-exp to apply-
proc, there is something wrong; you don't need to do that

Example: ((lambda (x y) (+ x y)) 3 5)
Parsing

Parse into an (app-exp proc args)

'(app-exp (lambda-exp (x y)  
 (app-exp (var-exp +)  
 ((var-exp x)  
 (var-exp y))))  
 ((lit-exp 3)  
 (lit-exp 5)))

Example: ((lambda (x y) (+ x y)) 3 5)
Evaluating

'(app-exp (lambda-exp (x y)  
 (app-exp (var-exp +)  
 ((var-exp x) (var-exp y))))  
 ((lit-exp 3) (lit-exp 5)))

This is evaluated in the current environment e by calling apply-proc with the
evaluated procedure and evaluated arguments

The procedure evaluates to  

'(closure (x y)  
 (app-exp (var-exp +)  
 ((var-exp x) (var-exp y)))  
 e)  
The arguments evaluate to '(3 5)

Example: ((lambda (x y) (+ x y)) 3 5)
Evaluating

apply-proc will evaluate the closure 

'(closure (x y)  
 (app-exp (var-exp +)  
 ((var-exp x) (var-exp y))) 
 e)  
by calling eval-exp on the body in the environment e[x ↦ 3, y ↦ 5]

Since the body is an app-exp, it'll evaluate '(var-exp +) to get '(prim-
proc +) and the arguments to get '(3 5)

Example 2
Parsing

Example 2
Parsing

What is the result of parsing this?  

(let ([f (lambda (x) (* 2 x))])  
 (f 6))

Example 2
Parsing

What is the result of parsing this?  

(let ([f (lambda (x) (* 2 x))])  
 (f 6))

'(let-exp (f)  
 ((lambda-exp (x)  
 (app-exp (var-exp *)  
 ((lit-exp 2) (var-exp x)))))  
 (app-exp (var-exp f)  
 ((lit-exp 6))))

Example 2
Evaluating

'(let-exp (f)  
 ((lambda-exp (x)  
 (app-exp (var-exp *)  
 ((lit-exp 2) (var-exp x)))))  
 (app-exp (var-exp f)  
 ((lit-exp 6))))

Evaluate the let-exp by extending the current environment e with f bound to
the closure we get by evaluating the lambda-exp in environment e:  
'(closure (x)  
 (app-exp (var-exp *) ((lit-exp 2) (var-exp x)))  
 e)

Example 2
Evaluating

With f bound to  
'(closure (x)  
 (app-exp (var-exp *) ((lit-exp 2) (var-exp x)))  
 e)  
we next evaluate the body of the let  
'(app-exp (var-exp f) ((lit-exp 6)))

This will evaluate '(var-exp f), getting the closure above and evaluate the
arguments getting '(6)

apply-proc will call eval-exp on the body of the closure and the extended
environment e[x ↦ 6]

This is another application expression and the process continues

set! expressions

MiniScheme G: set! and begin

EXP → number	 	 	 	 parse into lit-exp  
 | symbol	 	 	 	 parse into var-exp  
 | (if EXP EXP EXP) 	 	 parse into ite-exp  
 | (let (LET-BINDINGS) EXP)	 parse into let-exp  
 | (lambda (PARAMS) EXP)	 parse into lambda-exp  
 | (set! symbol EXP)	 	 parse into set-exp  
 | (begin EXP*)	 	 	 parse into begin-exp  
 | (EXP EXP*) parse into app-exp  
LET-BINDINGS → LET-BINDING* 
LET-BINDING → [symbol EXP]* 
PARAMS → symbol*

What is the value of

(let ([x 10])

 (+ x

 (let ([x 20])

 x)

 x))

This is the sum of 3 numbers

A. 30

B. 40

C. 50

D. 60

23

What is the value of

(let ([x 10])

 (+ x

 (begin

 (set! x 20)

 x)

 x))

This is the sum of 3 numbers

A. 30

B. 40

C. 50

D. 60

24

Assignments

Assignment expressions are different in nature than the functional parts of
MiniScheme

The set! expression introduces mutable state into our language

We're going to use a Scheme box to model this state

Boxes in Scheme

box is a data type that holds a mutable value

‣ Constructor: (box val)

‣ Recognizer: (box? obj)

‣ Getter: (unbox b)

‣ Setter: (set-box! b val)

Example usage

We can create a box holding the value 275 with  

(define b (box 275))

We can get the value in the box with (unbox b)

We can change the value in the box with (set-box! b 572)

If we use (unbox b) afterward, it'll return 572

This models the way variables work in non-functional languages

Implementing set!

To implement set! in MiniScheme

‣ Change the environment so that everything in the environment is in a box

‣ When we evaluate a var-exp, we'll lookup the variable in the environment,
unbox the result, and return it

‣ When we evaluate a set expression such as (set! x 23), we'll lookup x in
the environment to get its box and then set the value using set-box!

We can do this in four simple steps

Implementing set!
Step 1

We need to box every value in the environment

Two ways to do this (and I'm quoting Bob here)

‣ If you are young and cocky and sure you can find every place you extend the
environment, you can replace each call 
(env syms vals old-env)  

with  

(env syms (map box vals) old-env)

‣ If you have 68 years of experience with screwing up [I'm still quoting Bob
here], you might prefer to change the definition of env to do 

(list 'env sims (map box vals) old-env)

Implementing set!
Step 2

Do not change your env-lookup procedure

Do change the line in eval-exp that evaluates var-exp expressions to 

[(var-exp? tree) (unbox (env-lookup e (var-exp-sym tree)))]

At this point, the interpreter should work exactly as it did before you introduced
boxes!

Implementing set!
Step 3

Set expressions have the form (set! sym exp)

You need a new data type for these, I used set-exp

When parsing, put the unparsed symbol (i.e., 'x rather than (var-exp 'x))
into the set-exp and the parsed expression

Implementing set!
Step 4

Inside eval-exp, you'll need some code  

[(set-exp? tree)  
 (set-box! (env-lookup …)  
 (eval-exp …))]

Let's make set! useful!

MiniScheme now has set! but it isn't of much use until we can execute a
sequence of expressions like 

(let ([x 0])  
 (begin  
 (set! x 23)  
 (+ x 5)))

In Racket, we don't need the begin, but we do in MiniScheme because our let
expressions only have a single expression as a body

Parsing a begin expression
(begin exp1 exp2 ... expn)

You need a new data type to hold these

‣ Since begin creates a sequence of expressions, I called mine seq-exp but
begin-exp is also a good name (and visually distinct from set-exp)

Evaluating a begin expression
(begin exp1 exp2 ... expn)

Evaluate each expression in turn, returning the final one

‣ You can create a helper function to do that, or you can use our old friend:
foldl

‣ My code looks something like 

(foldl (λ (exp acc) (eval-exp exp e)) (void) …)

‣ (void) returns, well, a void value which does nothing

